看上去很高深莫测的样子,名副其实会当凌绝顶一览众山小$ F- h. S- ^9 X8 e; D# w4 ?. J5 u
V; k& N. W' s! @4 [中国科学技术大学潘建伟团队与上海技物所、新疆天文台等单位合作,首次在国际上实现百公里级的自由空间高精度时间频率传递实验,实验结果有望对暗物质探测、物理学基本常数检验、相对论检验等基础物理学研究产生重要影响。该成果于北京时间10月5日晚在国际学术期刊《自然》杂志发表。: u! P# O8 E# X
( u* _! C( T( ]7 R" r$ D在科学领域,时间的测量精度已经步入10的负19次方量级,也就是百亿年,误差不到1秒。作为七大基本物理量之一的时间,是目前测量最精确的物理量。 有最精确的计时,还要有与之精度相匹配的时间传递技术,两者同样重要。* E, o: B9 C% K7 t3 {) a
& S4 J A3 N- [( f; n! b" C
地面附近自由空间的环境复杂,大气中的各种扰动和湍流、链路损耗、环境变化等等因素给自由空间中的长距离时频传递带来了极大困难。之前,自由空间中的光频传输技术只能实现10公里量级的传输距离。: k% H/ T( Z- Y5 l; ~0 O4 e
6 ]% d2 E- [# v中国科学技术大学团队向这一难题发起挑战。在光源方面,研制出高功率高稳定度光梳,在光信号收发信道方面,研制出高稳定性且高效率的光收发望远镜系统,另外采用线性光学采样的干涉测量方式实现高精度的时间测量。经过一系列技术攻关,终于在相隔113公里的新疆南山天文台和高崖子天文台之间实现了万秒10的负19次方量级稳定度的时频传递。+ m/ E# E& r6 I9 R
& M5 R R% T7 W" g中国科学技术大学教授 张强:把我们非常精密的这种时间信号,通过这个望远镜打到这个100公里以外的另外一个望远镜,那边的话,然后我的这个信号被那边的一个同样的一个望远镜接收,接收了之后他们进行一些比较精密的时间探测,然后同时那边也会打一个同样的一个精密的光源信号也打过来,在这边也做一个同样的一个精密探测,然后两边的信号再做一个对准,做一个校正。
: v8 K+ \" `8 _5 d# J5 k/ O' e* @- [7 a0 q ]5 |9 v( E
时间的精确测量和传递,将使人们能够对相对论原理、各种引力理论、暗物质模型等等基础物理进行实验检验。' p3 \- m. O. I
* `1 v. K" z' S: n同时这也和我们的生活密切相关,例如,卫星的导航精度与计时精度紧密相关,要想定位更准确,比如精确到毫米以下,就需要更好的计时精度。在大地测量、地质勘探、雷达探测等等涉及社会民生的领域,精确的时间也都将发挥重要作用。- ~" K6 k: |: A* G, [
- Q, M: m4 I, r/ h/ \) i1 a. L# M
现在“秒”的定义是1967年确定的,经过几十年的发展,国际计量组织计划2026年讨论“秒”定义的变更。1 l- f6 g" x7 g7 S7 r* C
, f6 v6 p3 j! i$ R) G; k" ~
中国科学技术大学教授 张强:那么它也证明了就是说将来放在卫星上,可以基于卫星来做这种洲际的这种(时间)比对。那么如果能够实现洲际的比对的话,那么我们就可以实现新一代的这个“秒”定义。
/ S3 W: \+ p, d8 s# P
5 G! q; r. d6 @- Z, V8 _ |